首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   552篇
  免费   54篇
  2023年   6篇
  2021年   8篇
  2020年   5篇
  2019年   12篇
  2018年   10篇
  2017年   17篇
  2016年   12篇
  2015年   13篇
  2014年   27篇
  2013年   20篇
  2012年   28篇
  2011年   46篇
  2010年   22篇
  2009年   22篇
  2008年   31篇
  2007年   24篇
  2006年   36篇
  2005年   39篇
  2004年   30篇
  2003年   33篇
  2002年   22篇
  2001年   17篇
  2000年   13篇
  1999年   10篇
  1998年   11篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1993年   3篇
  1992年   5篇
  1991年   4篇
  1990年   5篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   6篇
  1982年   7篇
  1981年   3篇
  1979年   6篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   3篇
  1968年   3篇
  1966年   1篇
  1965年   3篇
  1963年   1篇
  1960年   1篇
排序方式: 共有606条查询结果,搜索用时 140 毫秒
601.
602.
603.
Olive productivity should be improved through stimulating nutrition, particularly under poor fertility soils. Consequently, the objective of this study was to assess the efficacy of applying organic and bio-fertilizers on the physiological growth, yield and fruit quality of olive trees under newly reclaimed poor-fertility sandy soil in an arid environment. During a field experiment carried out at El-Qantara, North Sinai, Egypt over two consecutive seasons (2019–2020 and 2020–2021), olive Kalamata trees were evaluated under three organic fertilizer treatments alone or in combination with three bio-fertilizers treatments. Organic fertilizer was applied as goat manure (16.8 kg/tree/year), or olive pomace (8.5 kg/tree/year) in mid-December of each season vs. untreated trees. The bio-fertilizers were applied as N-fixing bacteria (150 g/tree) was inculated in early March of each season, or amino acid mixture (1.5%) was applied three times, at 70% of full bloom, 21 days after full bloom, and a month later in comparison to a non-fertilized trees (control). The cultivar used was Kalamata, a dual-purpose cultivar for oil and table olives whose value increases when processed as table olives. The results indicated that the goat manure followed by olive pomace significantly enhanced photosynthetic pigments (chlorophyll a, b, and carotenoids), leaf mineral contents (N, P, K, Ca, Mg and Fe), tree canopy volume, number of flowers per inflorescence, number of inflorescences per shoot, initial fruit set, fruit retention. For fruit quality, fruit length and width, fruit weight, and total fruit yield was increased compared to the non-fertilized control. Likewise, The bio-fertilizer N-fixing bacteria followed by the amino acid mixture significantly improved all of the aforementioned parameters. Accordingly, it is recommended, both environmentally and economically to utilize organic and bio-fertizers, particularly goat manure combined with N-fixing bacteria, in low-fertility soil to sustain olive production as well as reducing mineral fertilization.  相似文献   
604.
Polycation-induced fusion of negatively-charged vesicles   总被引:3,自引:0,他引:3  
Sonicated vesicles of 20-50 nm in diameter consisting of neutral phospholipids and a variety of acidic phospholipids were interacted with polylysine, cytochrome c, Ca2+ and Mg2+. The addition of polycations caused massive aggregation accompanied by an increase of membrane permeability as determined by leakage of fluorescent dye. Aggregation was followed by fusion of the vesicles into structures that in some cases exceeded 1 micron in diameter. Polylysine induced aggregation and appreciable fusion at charge ratios (polylysine/phospholipid) of 0.5-2, while divalent cations did so only at charge ratios (cation/phospholipid) greater than 10. Aggregation and fusion induced by polylysine were dependent also on the size of the polycation, i.e., the longer the molecule the less needed to induce similar aggregation. It appears that, due to the concentration of charges on a single molecule, polylysine is at least an order of magnitude more effective than divalent cations at inducing fusion of membranes. Cytochrome c induced fusion of similar vesicles at moderately acidic pH (pH 4.2).  相似文献   
605.
606.
This work aimed to study the relationship between the accumulation of cadmium (Cd) or aluminum (Al) in certain tissues and the levels of lipid peroxides as well as tissue antioxidants. To carry out such investigations, CdCl2 was given to rats in two dose levels; 0.5 or 2.0 mg/kg i.p for 1 day or daily repeated doses for 2 weeks. Al was given as AlCl3 either in a single dose of 100 mg/kg or daily repeated doses of 20 mg/kg for 2 and 4 weeks. The measured parameters were tissue malondialdehyde (MDA, index of lipid peroxidation) and reduced glutathione (GSH) levels as well as the activities of glutathione peroxidase (GSH-PX), glutathione reductase (GSSG-R), and glucose-6-phosphate dehydrogenase (G-6-PDH) enzymes. Liver and kidney functions were assessed by measuring serum alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities as well as serum urea and creatinine concentrations. Cd and Al concentrations in the studied tissues were also measured. Results indicated that tissue Cd was significantly increased after administration of either Cd doses. After a single dose of 0.5 or 2.0 mg/kg CdCl2, the increase in tissue Cd levels were accompanied by an increase in MDA and a decrease in GSH levels. On the other hand, after repeated administration of Cd, tissue Cd accumulation was accompanied by increased hepatic and renal GSH levels with decrease in MDA content and a decrease in GSH-PX activity in liver. Liver function was affected at all dose regimens, whereas kidney function was affected only after 2 weeks administration of the higher dose. In Al treated rats, Al concentration was shown to be increased in liver much more than in brain. This was accompanied by a slight decrease in hepatic GSH level after 2 weeks and a decrease in GSH-PX activity after 4 weeks. Liver function was affected only after repeated injection of Al for 2 or 4 weeks. In general, Al administration exhibited safer pattern than Cd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号